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functions. Secondly, we explore the similarity of derivative polynomials and
Chebyshev polynomials. The idea is to choose the derivative polynomials as basis

gﬁzg}i)&fj\; polynomials sets of a polynomial space. From this viewpoint, we give an expansion of the
Derivative polynomials derivative polynomials for tangent in terms of the derivative polynomials for secant
Tangent as well as a result in the reverse direction. Moreover, we get the Frobenius-type
Secant formulas for exterior peak and left peak polynomials. Finally, we discuss the

connections between derivative polynomials and Eulerian polynomials.
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mining, Al training, and similar technologies.

1. Introduction

Hoffman [17] once said in his paper on derivative polynomials: “Sometimes problems naturally occur in
pairs, and it is best to tackle both at the same time.” This idea was fleshed out in the paper of Hetyei [15]. The
derivative polynomials for tangent and secant obey this principle. Another classical pair of polynomials that
naturally occurs in pairs is the pair of Chebyshev polynomials of the first and second kinds. All polynomial
sequences considered in this paper form analogous pairs. This paper is motivated by exploring the similarity
of derivative polynomials and Chebyshev polynomials.

An elementary result in the theory of trigonometry says that

d%tan& =1+ tan?4,
d% sec @ = tan f secf.
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The derivative polynomials for tangent and secant are respectively defined as follows:

dn d”
W tan6 = P, (tan ), e secf = sec @, (tand).

By Taylor’s theorem, we have

oo

tan(f+z) = 3 ~— tan(ﬁ)% =" Pu(tan e)';

sec(0 + z) = i % SeC(Q)Z—T = sec(6) Z Qn(tan 9)%7

The tangent formula says that

_ tan(0) + tan(z)
tan(6 +2) = 1 — tan(#) tan(z)"

Since sec(f + z) = it follows from cosine formula that

D S
cos(0+z)?

1 _ sec(f) sec(z)
cos(6) cos(z) — sin(f) sin(z) 1 — tan(f) tan(z)"

sec(d + z) =

So we obtain

oo
ZTL

Plai2) =Y Paln) Sy

n!  1l—ztanz’

x + tan z sec z

(2)

I~ 1—ztanz’

Qrsz) = Y Qul);
n=0

n=0

It should be noted that Carlitz and Scoville [8] deduced (2) by using the method of characteristics.
The study of derivative polynomials was initiated by Knuth and Buckholtz [21]. Using the chain rule,
they deduced that

Pasa(@) = (1 +0%) 2 Pa(e), Quin(0) = (14 2%) 2 Qu(e) + 2Quo). ®)

Below are these polynomials for n < 3:

Po(l‘)
Qo()

, Pi(z) =1+2°, Py(zx) =2z 4223 P3(z) =2+ 8% + 62,
) Ql(x) =, QQ(:B) =1 +21‘2, Q3(£L’) =5z + 61’3.

Il
— 8

Note that P,(—z) = (=1)""P,(x) and Q,(x) = (—1)"Qn,(—z). Hence P,(z) and Q,(z) are both alter-
nately even and odd.

The derivative polynomials can be used to express some improper integrals and infinite series, including
Hurwitz zeta functions and Dirichlet L-series, see [1,6,12,17,18,28]. For z > 0, the gamma function T'(z)
and the digamma function ¢ (x) are defined by

I(x)
['(z)"

I(z) = /e*ttxfldtv Y(x) = % InT(z) =
0

Let 1, (z) = S-4(x) be the polygamma functions for n > 1. It is well known that

dfljn
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Unl@) = (=1)""'n 'Zﬁwﬂ—l)"*lmdnﬂvx%
k=0

where ((n,z) is the Hurwitz zeta function. Polygamma functions arise naturally in the study of beta
distributions, and they obey the reflection formula (see [2,4]):

n

U1 —2) + (=1)" o, () = (71)”7r@ cot(mz) = 7" P, (cot(rx)),

where the last equality follows from the fact that W cot(z) = (—1)" P, (cot(x)).

In the next section we collect the definitions, notation and preliminary results that will be used in the rest
of this work. In Section 3, we present the connections between central binomial coefficients and trigonometric
functions. In Section 4, we explore the similarity of derivative polynomials and Chebyshev polynomials. In
particular, we get the Frobenius-type formulas for exterior peak and left peak polynomials. In Section 5, we

establish the connection between derivative polynomials and Eulerian polynomials.
2. Preliminaries
2.1. Chebyshev polynomials
The Chebyshev polynomials of the first kind are defined by
T, () = cos(nd), when z = cos(6).

They are orthogonal on [—1, 1] with respect to the weight function \/1177, see [9] for instance. While the
Chebyshev polynomials of the second kind are defined by

sin((n + 1)0)

Un(x) = sin(0)

, when x = cos(0).

The polynomials U, (z) are orthogonal on [—1, 1] with respect to v/1 — 22. Explicitly, we have

[n/2] [n/2]
n e -~ n+1 B e
T = 2 ()6 -0 v = 3 (1) et (@

which imply that T, (z) and U,(x) are both alternately even and odd, see [26] for details. The identity
sin((n + 1)0) — sin((n — 1)0) = 2sin(0) cos(nf) leads to a well known relationship:

To(x) = 5 (Un(x) = Un—a()). (5)

N =

2.2. Ezplicit formulas of derivative polynomials

In [1], Adamchik solved a long-standing problem of finding a closed-form expression for the higher deriva-
tives of the cotangent function:

n

wcot() (20)"(cot(x) — 1 ;Q—k{ }zcot (z) = 1),

where 1 = v/—1 and {Z} are the Stirling numbers of the second kind, i.e., the number of ways of partitioning
the set [n] :={1,2,...,n} into k blocks. Equivalently, we have
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Pu(x) = (20" (@ —0) Y ;{Z}(zx — 1)k,
k=1

Since then, there has been much progress in the coefficients of the derivative polynomials, see [6,13,20,23,28].
For example, in [6], Boyadzhiev obtained that

Q) =Y |- ﬂz(){ b (av 1y

j=0
2.8. Permutation statistics, Eulerian polynomials, Euler numbers and Springer numbers

Let &,, denote the set of all permutations of [n] := {1,2,3,...,n}. For any 7 € &,,, written as the word
m(1)7(2) - - m(n), the entry 7(i) is called

o a descent if € [n — 1] and 77( ) > (i + 1);

o a double descent if i € {2,3,...,n} and w(i — 1) > 7(i) > 7(i + 1), where we set w(n + 1) = 0;
o an interior peak if i € {2,3,...,n—1} and 7w(i — 1) < w(i) > w(i + 1);

o a left peak if i € [n — 1] and 77(1 —1) <7(i) > w(i + 1), where we set w(0) = 0;

o an exterior peak if i € [n] and 7(i — 1) < 7(i) > 7(i + 1), where we set 7(0) = w(n+1) =0.

Let des(m) (resp. ddes(w), ipk (7), Ipk (7), epk) denote the number of descents (resp. double descents,
interior peaks, left peaks, exterior peaks) of 7. For example, if 7 = 214356, then des (7) = 2, ddes (7) = 0,
ipk (r) = 1, Ipk (7) = 2 and epk = 3.

The Eulerian polynomials A, (z) first introduced by Leonhard Euler in the series summations:

S gk TAn(@)
I;)k " = 0=z

A combinatorial interpretation of A, (x) is given as follows (see [19,25]):

1‘) — Z :L‘des(ﬂ).

TES,

The Eulerian polynomial admits several remarkable expansions in terms of different polynomial bases. Here
is the classical Frobenius formula for Eulerian polynomials (see [11]):

Zk'{} (1—az)" (6)

In Corollary 9, we provide similar formulas for exterior peak and left peak polynomials.
We say that m € &, is alternating if 7(1) > w(2) < 7(3) > ---7(n), ie., 7(2i — 1) > 7(2i) and
m(20) < w(2i+ 1) for 1 <i < |n/2]. A famous result of André [3] says that

2 23 Z4 5

ZEnZ ftanz+sec,2*1+Z+§+2—+5E+16f . (7)

where FE,, is the number of alternating permutations in &,,. Since Euler used (7) as the definition of E,,
the numbers E,, are called Euler numbers (sometimes they are called André numbers).
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Note that

2n+1

Z Eopta (; 1) = tan z, Z Egn = sec z.
n=0 !

For this reason, the numbers Fs, ;1 are sometimes called tangent numbers and Es, are called secant numbers.
The reader is referred to [31] for a survey on this subject. In [21], Knuth-Buckholtz noted that

Pyp+1(0) = Eapt1, Q2n(0) = Es,y,.

Hoffman [17] found that

2"Q,,(0) = 22k By, if n = 2k is even;
P,(1) =2"(P,(0 2(0)) = ’ . L 8
(1) (P (0) + @n(0)) {2”13,”(0)=22k+1E2k+1, if n =2k + 1 is odd. (8)
He also noted that Q,(1) are the Springer numbers of root systems of type B, see [18, Proposition 4.1].
A snake of type B, is a sequence (x1,xs,...,2,) of integers such that 0 < z; > zy < ---z, and
{lz1],|z2ls- -y |znl} = [n], ie., |z1]l22] - |2n| is an alternating permutation in &,. Let s, be the num-
ber of snakes of type B,,. Following [18, Theorem 4.2], one has s, = @, (1), and so

s " 1
Doy =
=

cosz —sinz’

A main result obtained by Hoffman [18, Theorem 3.1] says that

Qn(1) = —sin n?w + Z (;C)(_l)kpn2k(l), 9)

which is closely related to the computation of the @, (1) from the numbers P, (1) via Seidel matrices. In [15],
Hetyei showed that derivative polynomials are closely related to the face enumerating polynomials of the
Chebyshev transforms of the Boolean algebras. He also showed that the zeros of P, (x) and Q,(x) are pure
imaginary, have multiplicity 1, belong to the line segment [—,1], where 2 = \/—1, see [15, Corollary 8.7].

2.4. Variants of (1)

Setting s() = sec and t(f) = tan6, since 1 + tan?# = sec? 6, an equivalent variant of (1) is given as
follows:

d
{ 44(0) 32(9)

which can be used to study the interior and left peak polynomials (see [10,22,27] for details). If we define
[ =sec(y/qf) and g = \/qtan(,/qf), where ¢ > 0 is a constant, then %f = fg and %g = qf?, which yield
the differential system:

e
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For the differential system (10), Ma [22, Theorem 1] found that

;Tn;,s(&) = Zween s(6)2Pk (ﬂ)+1t(9)n—21pk (™),
dam (0) = ZWEGH s(6)2iPk (ﬂ)+2t(9)n—1—2ipk (m).

Note that Y .o 2™ =3 o 2P+ Chen and Fu [10, Theorem 9] observed that

n

dn

el _ 2epk () n—+1—2epk ()
O = s0) t(0) :

TeES,
We shall end this section by giving an application of (2). Let us put

0= Plaiz) = 2y Qanz) = ———

1—zxtanz’ cosz —xsinz

Consider the differentiations of a and b with respect to z while x is being fixed. We obtain

d 1+ 22 d xcosz +sinz
~ a=——"""3, 7 0=77—7.
dz (cosz —xsinz)?’ dz (cos z — xsin z)?

So we get the following differential system:

(f—za = (1 +2?)b?,
4p = ab,

which gives a variant of (11).
3. Trigonometric functions and central binomial coefficients

In 1972, Beeler et al. [5] found an elegant identity:

tan(n arctan(t)) = %(1 + ) — (1 — )"

L+ o)™ + (1 — )"

which can be simplified to

Zk)o(_l)k (2]3&) tan?F+1 (z)

Zk>o(_1)k (27;@) tan®* ()

tan(nx) = (12)

where x = arctan(t) and » = v/—1. It is natural to further explore the connections between central binomial
coeflicients and trigonometric functions.
Consider the following formal computations:

d n+1 n d d n+1 d n d
<@ sec(@)) = (@ sec(@)) 7 sec(6), (sec(ﬂ)@) = (sec(@)@> sec(ﬁ)@.
As a dual of (4), we can now present the following result.

Theorem 1. For n > 1, we have

{ (% sec(@))n (sec(0)) = n! Z,@O (27;:_;_11) tan™ 2k (0) sec"t2E+1(0),

(% sec(@))n (tan(9)) = n! >, ("2'21) tan"~2*+1(0) sec”t2¢(9).
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In other words, we have

(Sec(g)%)n (sec®()) = n! 2 k>0 (27;@111) tan™ 2% () sec"t2k+2(9),
(sec(8) L))" (tan(6) sec(6)) = n! >0 (51 tan”~2+1(9) secm 2R+ (g),

Proof. Set

) n+1 o n+1
M(n, k) n.(2k+1 , N(n,k) =n! ok )

Using the recurrence relations

n\ (n-—1 " n—1 n\ n—k+1 n
k) \k—-1 E ) \k) k k—1
and it can be easily verified that

M(n+1,k) = (n+ 2k + 2)M(n, k) + (n — 2k + 2)M(n, k — 1),
N(n+1,k) = (n+2k+1)N(n,k)+ (n— 2k + 3)N(n, k — 1).

Note that
— sec(6) (0) = — sec?(0) = 2tan(f) sec?(6)
7 sec sec(f) = 7 sec = 2ta sec ,

(% sec(9)> tan(f) = % sec(f) tan(#) = tan?(#) sec(f) + sec®(6).

So the expansions hold for n = 1. Assume that there exist nonnegative integers M (n, k) and N(n, k) such
that

<% Sec(0)> (sec(9)) = Z M(TL, k) tan” 2k (0) gecnt2k+1 (9),

k>0
(% sec(9)> (tan(&)) _ Zﬁ(nvk) tann—2k+1(9) SeCn+2k(9).

k>0

Then we have

A (et (& sect)) o)

i (Z M, ) tan#4(0) secn+2k+2<e>)

k>0

= "(n — 2k)M (n, k) tan" =251 (9) sec™ T2+ (9)
k>0

> (0 + 2k + 2) M (n, k) tan™~2F1(9) sec™ 252 (9),
k>0

so we get M(n+1,k) = (n+ 2k +2)M(n, k) + (n — 2k + 2)M (n, k — 1). The numbers M (n, k) and M (n, k)
satisfy the same recurrence relation and initial conditions, so they agree. Similarly, it is routine to verify
that N(n, k) = N(n, k). This completes the proof. O
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Corollary 2. Forn > 1, we have

(bec(e) (;10>”—1 (;10 (tan(d) + sec(f)) = (n — 1)!'sec™(0)(tan(0) + sec())".
4. The similarity of derivative polynomials and Chebyshev polynomials
4.1. Derivative polynomial bases
Motivated by (5), we shall express Qn+1(x) in terms of {P;(x)}?_,, where we set P_i(z) = 1, since

P_qi(x), Py(z), Pi(z), Pa(x), ..., Py(x) form a basis for polynomials with degree less than or equal to
n + 1. We can now present the first result of this section.

Theorem 3. We have

Qan(z) = "+ Z <2k: n 1) ~1)* Papy—op—1(2), (13)

2 1
Q2n+1(z) = ’; (221 1) (—1)* Pap g (). (14)
Proof. By using (2), we obtain
- sin?(2) + cos?(2) 1
Qlw:2) = cos(z) 1 — xtan(z)

sin?(z) ) 1

_ (cos(z) — zsin(z) + wsin(z) +

cos(z) / 1 — xtan(z)
) 2t
After simplifying, we get
Q(z; z) = cos(z) + sin(z) P(z; z). (15)
So we get
o0 Z2n+1
n;) Qnl (2n+1)!

)" 2” = (—1)k22k+1 Pon—1(2) o Pon(2) oy
@y S <nz_:1 D D vm i )

2n+1

k=0

Selecting the coefficients of 22" and z , we arrive at

QQn (:L') _
(2n)!

k P2n72k71(x)
2k+1 2n—2k—1)!’

Q2n+1() (—1)k Pap—a21(7)

@n+ 1)1 & (26 + 1) (20— 26)!

”M

and so the proof is complete. O
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Example 4. In the case when n = 2 in Theorem 3, we have

Qa(x) = 5 + 2822 + 242 = 4P3(x) — 4Py () + 1,
Qs(x) = 61z + 1802 + 1202° = 5P, (x) — 10P,(z) + Po(x).

It follows from Theorem 3 that
k
= Po,_or_1(1
Q2,(1) "+ E <2k+1) 1)" Pop—ok—1(1),

L 2n+1
Q2ant+1(1) = ;;) (Zk n 1) (=1)* Py —ar(1),

which differ from (9). Combining the above formulas with (8), we obtain the following result.

Corollary 5. For any n > 0, we have

P 2k +1
" /on+1 e
Soan+1 = Z <2kj + 1) (*1)]622 2kE2n_2k
k=0

The Bernoulli numbers B,, can be defined by the exponential generating function

_iB z+1z 1z4+126 128+
" nl 62 304! 426! 308!

In particular, Ba, 1 = 0 for n > 1, since 3 coth (%) is an even function and

z
— coth
2Co

= +

(z)_zez/Q—l—e_z/2 z z
2)  2e#/2—e"2/2 ex—1 2

The Bernoulli numbers appear often in the coeflicients of trigonometric functions (see [14, Chapter 6] for
details). As illustrations, we have

o Z2n
2 csc( z:: "4 2)B2n(2—n)!7
e Z2n
zeot(z) = ;(—4)”3% o)l (0 < |z] < m).

It follows from (15) that P(x;z) = csc(z)Q(x; 2) — cot(z). Thus
zP(x;2) = zese(z2)Q(z; 2) — z cot(2).

So we have
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2n+1 oo 2n+2

ZPQn +Zp2n+1 2 +1)
2 g L2042 S2n+1
1+ Z 4 2)Baiyo 2 +2)] Z Qan(z + Z Qan+1(z 2 n 1) -

> (B

( )nB2n

— (2n)!

Equating the coefficients of 22”1 and 22"*2, we see that

P, () Q2n+1 )+Z 1)iT2(4 — 2)Boiio Qop—2i—1(7)

20! @nt1) (2i + 2)! @n—2i - 1)
Ponii(r) _ Qonya(x + Z —1)"2 A = 2)Bois Qap—2i(z)  (—=4)" ' Bapo
2n+ 1) (2n+2)! (2¢ +2)! (2n — 2i)! (2n +2)!

Using these expressions, we get the following result.

Theorem 6. We have

=

n—

(2n + 1) Pop(7) = Qapny1(x) + Z (i?i;) 1) 2 (47 — 2) By 12Qap—2i—1(z),

1=0

(2n +2)Popyi1(x) = Qopta(x) + 4

1=

" /2n+2
2 + 2

)(—1)i+2(4i+1 —2)Boi12Qan—2i(z) — (—4)" ! Bayy yo.

4.2. Dual formulas of (4) and (6)

We now define four kinds of enumerative polynomials over the symmetric group &,,:

an(x)zz (n,k)x ank

k=1 k>0
cn(x) = Z c(n, k) Zdnk
k>1 k>0

where the coefficients are respectively defined by

a(n, k) = #{m € &, : epk =k, ddes =0}, b(n, k) = #{r € &, : Ipk =k},
c(n, k) =#{m € &, :epk =k}, d(n, k) = #{r € &, : ipk = k}.

As pointed out by Chen and Fu [10, Theorem 10], one has c¢(n,k + 1) = d(n, k). Hence ¢, (z) = xd,(x).
From [11, Propositions 3.4, 4.9] and [23, Theorem 1], we see that the numbers a(n, k), b(n, k) and c(n, k)
satisfy the following recursions:

a(n, k) =kaln—1,k)+ (2n —4k +4)a(n — 1,k — 1),
b(n, k) = (2k + 1)b(n — 1,k) + (n — 2k + Db(n — 1,k — 1),
c(n, k) =2ke(n — 1,k) + (n — 2k + 2)c(n — 1,k — 1),

with a(1,1) = ¢(1,1) =1 and a(1,k) = ¢(1,k) =0 if k # 1, b(1,0) = 1 and b(1,k) = 0 if k& # 0. Using the
above recursions, it is easy to verify that c(n, k) = 2"+t1=2kq(n, k), and so
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cn(x) = 2" a, (%) .

For convenience, we list the first few polynomials (see [30, A101280, A008971, A008303)):

a1(z) =z, as(x) =z, az(x) = v + 222, a4(v) = = + 8%
bi(z) =1, by(x) =14z, by(z) =1+ 5z, by(x) =1+ 18z + 5z%;
c1(x) =z, co(x) = 2z, c3(x) = 4o + 222, cy(x) = 8z + 1622

Theorem 7. For n > 1, we have

L(n+1)/2] Ln/2]
Py = Y aln W +a)M o), Qule) = 3 bn k(1 +a?) e (16)
k=1 k=0

Proof. When n = 1,2, we have P;(x) = 1+ 22, Py(z) = 22(1 + 2?), Q:1(z) = x and
Q2(7) =1+ 22% = 2% + (1 +27).

So the expansions hold for n = 1,2. By induction, assume that they hold for n = m. Then

Prji(z) =1+ xQ)%Pm(:c)

=1+ 1‘2)% Z a(m, k)(1 + .%'Q)k(Zx)m'H_Qk
k

= ka(m, k)(1+2®)*(22)" 27 £ "(2m + 2 — dk)a(m, k)(1 + 2*)* ! (22)™ 2,
k k

which yields that the coefficient (1 + 22)*(2z)™*+2-2% of P,,,1(x) is given by
ka(m, k) + (2m — 4k + 6)a(m,k — 1) = a(m + 1, k),

as desired. Similarly,

Qui1(2) = (14 2%)2-Qun (@) + Qi (2
=(1+ ﬁ)% Z b(m, k) (1 + x?)ka™=2F 4 o Z b(m, k) (1 + x2)kgm—2F
k k

= (1 +2k)b(m, k) (1 + 2®)*a™ 172 £ "(m — 2k)b(m, k) (1 + 22)FHam =2k,
k k

which implies that the coefficient (1 4 22)*(2z2)™T1=2% of Q,,11(x) is given by
(14 2k)b(m, k) + (m — 2k + 2)b(m, k — 1) = b(m + 1, k).
This completes the proof. O

The central factorial numbers of the second kind T (n, k) are defined in Riordan’s book [29, p. 213-217]
by
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Using central difference operator, Riordan [29, p. 214] deduced that
KT (n, k) = -7 (=5 .
(. 1) 2_;)(])< ¥ (5-9)

We denote by U(n, k) = T(2n,2k) and V(n,k) = 4"~*T(2n + 1,2k + 1) for all n,k > 0. These numbers
satisfy the recurrence relations

Un,k)=U(n—1,k—1)+k2U(n — 1,k),
V(nk)=V(n—1k—1)+ 2k + 1)2V(n — 1,k),

with the initial conditions U(1,1) =1, U(1,k) =0if k # 1, V(0,0) = 1 and V(0,k) = 0 if k # 0.

Theorem 8. Forn > 1, we have

n

Paor(2) = (=477 (2] = YW (n, j)(1 + 2%, Pop(a) =@y (—4)"7(2)!U(n, j)(1 + 2,

J 1

Il
—

M-

I
o

QQn (JJ) =

(=D)" 7NV (n,5) A + 2%, Qania(z) =z ) (=1)"77 (25 + 1)V (n,j)(1 + 22)”.
7=0

J

Proof. Note that
Pi(z) = 1+a% Py(x) = 22(1+27), P3(x) = —4(1+2°) + 6(1 + 2%)*,
Qi(z) ==z, Qa(w) = —1+2(1+27), Qs(x) = z(-1+6(1+27)).
We proceed by induction. Assume that

Po1(@) = > (=4)™ (25 — DIU(m, )1+ 22), Qam(x) =Y (=1)™ 77 (25)1V (m, j)(1 + 2°)7.

j=1 =0

Using (3), we arrive at

(=)™ (25U (m, §) (1 + 2%)7,

IV

Il
-

Py () =x
J

Qomi1(z) =2 ) (=1)"77(25 + 1)V (m, j)(1 +2°).

I

I
=)

J

We proceed by induction. Note that
9 d
Pomr1(z) = (1+27) o Pom(2)

=D (4" (2N (m, ) (1 + 27T+ +w22 )" (2)N2H)U (m, j)(1 + 22

j=1 j=1
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M-

(=4)" 7 2)W (m, j)(1 + )"+ + (1 + 2% — 1) Z (=4)" 77 (2)U25)U (m, j)(1 + @)

<.
Il
-

(=)™ 2T (m, ) (1 + 2?)T T+ (=)™ (2))1(25)U (m, ) (1 + 22)7 ' =

j=1

.

Il
_

(=)™ (2)1(24)U (m, ) (1 + x%)?

W’Ms 3

~
Il
—

(=)™ (25 + DU (m, j) (1 +2%)7F =3~ (=4)"77(25)1(2/)U (m, j) (1 + 2°)’

I

1

J

(=4)" 17927 = DU (m, ) (1 + @)

s

(—4)™=9(25 + DU (m, §)(1 + 227+ +

M-

1

<.
Il
—

J

Extracting the coefficient of (—4)™*177(25 — 1)!(1 4 2?)? leads to

So we get
m—+1 ]
Pymya(z) = D (=)™ (25— DW(m+1,5)(1 + %)
j=1
Similarly, one can verify that
m+1 ) )
Qomia(@) = S (~1)™ T2V (m + 1, )(1 + 22,
§=0

This completes the proof. O

Remarkably, combining Theorems 7 and 8, substituting 12;32 — y, we get the following Frobenius-type
formulas for exterior peak and left peak polynomials.

Corollary 9. Forn > 1, we have

M:

azn—1(x) = ‘:1(2.7 = DIW(n, j)2’ (1 — 4z)" 7,
azn(z) = E:(?J — 1)U (n, j)a’ (1 — 4x)" 7,
ban(x) = Z:(Z”'V(” 72! (1—a)",

bon+1(z) = _:] (2j + D)WV (n, f)a? (1 — z)",

can—1(z) = Zn:@j — )4 U(n, j)a? (1 — )",

<.
Il
—_
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n

o) = 23 (2] — VYA IU () (1 — 2y
j=1

5. Mobius transformations of Eulerian polynomials

Let £[n] = [n]U{—1,—2,...,—n}, and let B,, be the hyperoctahedral group of rank n. Elements of B,,
are signed permutations of +[n] with the property that o(—i) = —o (i) for all i € [n]. The type B Eulerian
polynomials are defined by

Bn(z) = Z xdeSB(U)v

oceB,

where desp(0) = #{i € {0,1,2,...,n—1}: o(i) > o(i+ 1)} and o(0) = 0 (see [7] for details). It is well
known that (see [16])

S o An(—1)Z1 =1 + tanh(z), (18)
> Bn(—l)xn—T = sech (2z).
Consider the derivative polynomials for hyperbolic tangent and secant:
d” ~ d” ~
—— tanh§ = P,(tanh ) and ——sech 6 = sech - @, (tanh ).
don dor
It follows from tanh § = itan(f/i) and sech 6 = sec(/i) that
Po(z) =i""'P,(iz) and Qn(z)=i"Qn(iz).
By the chain rule, we see that
Bua() = (1 -2 & Pale), Po@) = 19
Qn+1(x) - (1 - xQ)%Qn(x) - ‘rQn(x)ﬂ QO(‘Z) =1
Motivated by (18), we find the following result.
Theorem 10. We have
(1" Bale) = o+ 0" (22 ) ) (12 Qule) =+ 1" B (1)
x+1)’ r+1
Proof. It is well known that
Apii(z) = (nz + D) Ap(2) + (1 — 2) L A, (2), (20)
Byii(z) = 2nz + 2+ 1)B,(z) + 22(1 — 2) £ B, (2),

with Ag(z) =1 and By(z) = 1, see [11,24]. Set

Ao(@) = (@ + 1)" A, (i R 1) , Bule) = (x+1)"B, (i:) .

Substituting these two expressions into (20) and simplifying, we obtain
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